PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Dynamics of coupled gap solitons
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We show analytically that solitonic states of two modes associated with different gap edges are formed when
incident waves are sent in layered dielectric systems with a small band gap. The resulting coupled gap solitons
are described through a nonlinear Satinger equation and propagate with a speed equal to half the speed of
light. We discuss the conditions for the existence of coupled gap solitons.

PACS numbds): 42.65.Tg

[. INTRODUCTION above some critical value the “trivial solution{according
to Ref.[11]) becomes unstable while at the same time, gap
Periodic optical structures attract increasing attention dusolitons appear that propagate with a velocity close/th
to their remarkable properties such as the appearance of stéjr the present work it is important to mention that the above
gaps in the spectrum, where the propagation of the linegphenomena are observed when the incident wave has fre-
waves is impossibl¢l]. Furthermore, periodicity can pro- quency equal to the middle of the gap and the critical inten-
duce group velocity dispersiofGVD) at the edges of the sity is estimated to be of the order of the half of the gap
gaps, even if the composite materials are nondispersivavidth (in dimensionless unijs Physically, this corresponds
Combining nonlinearity with such a dispersion may lead toto a situation where both gap edges play an equivalent role in
the creation and propagation of solitons. This possibility hashe wave creation and hence excluded from the conditions of
been predicted by Winfyl2] and discovered numerically by the work presented in Reff5-7].
Chen and Mills[3]. In a series of publicationg4—10] the The situation considered iri1] naturally implies a cou-
theory of the gap solitons has been developed. In particulapling of edges of the gap. This coupling is different from the
it has been shown that when nonlinearity is present, thene considered if8-10], since in the last case structures
propagation of light in the gap is possible and occurs in thewith weak modulation depths were examined, while the
form of pulses localized in space that are named gap solitonsnodulation in[11] is extremely strong. In the case of weak
From rigorous expansion methods developed in Refsmodulation[8—10] coupling occurrs between counterpropa-
[5—7] we know that these pulses are governed by the nongating plane waves with wave numbers determined by the
linear Schrdinger (NLS) equation when the incident wave Bragg condition. By analogy, it is reasonable to assume that
has frequency equébr close to that of the gap eddé,6] or  in the conditions of the numerical experiment of Reif1]
by a system of coupled NLS-like equations if either the fre-there is a coupling of standing waves that are Bloch func-
guency is inside a gap or generation of the third harmonic isions of states near the stop gap.
taken into accounf?7]. The method of Refs[5-7] uses The goal then of the present paper is to investigate in
Bloch functions as a background of the expansion that makesiore detail the role of the gap edges in the dynamics and
it rather general; it has been applied so far only to studygive an analytical explanation for the numerical findings of
situations when at nonvanishing periodic modulation of thePeyraud and Coste. It will be shown that the method of de
linear dielectric permittivity either the incident radiation is Sterke and Sip6,7] can be generalized to take into account
close to the band edge frequency or the gap width is largeoupling of modesHere we mean sufficiently strong cou-
enough(a system of the coupled NLS-like equations describ-pling, which occurs on dinear level of the perturbative ex-
ing the last case is derived [T]). Peyraud and Cosfd 1], pansion, rather than due to the well known cross-phase
on the other hand, used numerical experiments and discovaodulation[14]. It is to be mentioned that another manifes-
ered some interesting propagating features of nonlinear laytation of mode coupling due to anysotropy of the medium
ered media. More specifically, they found th{gtstationary  has recently been reported[ib2]. In that case weak anisot-
gap solitons are generically unstalfiee., asymmetry of the ropy resulted in splitting the frequenélpcated near an edge
system results in thpropagationof the solitong, and(ii) if  of a stop gap large enouglnd creating vector solitons of
the intensity of the applied radiation is strong enough, i.e., iswo orthogonal polarizations of the field. The coupling stud-
ied in the present paper has a different physical nature: it is
due totwo modes corresponding two different edges of a
*Also at Centro de Cicias Matemtcas, Universidade da Ma- narrow gap The medium will be considered isotropic. This
deira, Praa do Municpio, 9000 Funchal, Portugal. will lead to asingle Schralinger equation so that respective
'Permanent address: Department of Physics, University of Cretsolitons will have “scalar” character as long as only one TE
and Research Center of Crete, P.O. Box 1527, Heraklion 7111(olarization of the electric field is under consideration.
Crete, Greece. The structure of the paper is the following: In Sec. Il we
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give a precise definition of the problem and describe the E=peM+pu2e@+. .., 2)
analytical technique to be used. In Sec. Il we discuss the

roperties of the coupled gap solitons and in Sec. IV we . o
Eonlilude P gap wherey is a small parameter <1, and use the substitution

IIl. MULTIPLE SCALE EXPANSION e®(x,t)=[ay(X,t) p1(X) +ax(X,t) do(x) ]!+ C-C-(3)
Before deriving analytical expressions, let us first discuss
some physical and mathematical aspects of the problemyereafier the indices 1 and 2 refer to the lower and upper
Consider an mudent wave having a frequency equal to th%dges of the gap, respectively,(x) is the Bloch function
freque_ncy at the middle of the stop gap and assume that the&sociated with the edge, w=(w,+ w,)/2 is the frequency
latter is narrow enouglithe arguments that follow qualita- corresponding to the middle of the gap, and c.c. means com-

tively apply also for the case of large radiation intensity/e plex conjugation. In the representation of E§) we have
denote byw; and w, the lower and upper gap boundaries, imposed

respectively, i.e., assume; < w,. In the presence of nonlin-

earity, an incident wave should cause generation of solitons

at both edges. Since soliton pulses are products of a delicate W2 ™ =, j=2 @)
balance between GVD and nonlinearity a small “distance” ) ’

between the band edges causésultaneousexcitation of

solitons on one hand, whereas, on the other hand, in order f%{nd hence the fact that the amplitudes(x,t) are slowly
both solitons to exist, the balance between nonlinearity angarying has been taken into accourote ',[hat the multi-
dispersion irbothedges has to be provided. The last require-,

scale expansion
ment is not evident or trivial. Indeed, the sign of GVD at the P
edges of one of the gaps is different. Thus, in order for gap

. . . — 2 — 2
solitons to exist, it is necessary to have another source of t=totautitu et -+, X=Xo+uX;+uXo+---
GVD.

In order to give an idea of the possible origin of the in- resylts in ,— wy)t=wt; anda,, depends orx; andt; with
duced GVD, let us recall the well known fact of the linear j=1:a_=a (x;,X,, . .. t1,ts, ...) (see[6], or the devel-

theory [15] If there is a cross pOint of two branches of aopment be|ow Thus, Comparingz) and (4), the physica|

spectrum of a systenii.e., a degeneration poitthen a condition for the expansion to be valid can be expressed
small perturbation removes the degeneracy and results in tW@rough the relation

new branches. On the other hand, this means that in leading
order there are two representations of a linear wavehe 3l
nonlinear theory it serves as a background for an envelope wZ_“’lN(X ')

. : ; . : )
soliton). They are either perturbed.e., having the gapor Wyt wq €
unperturbed linear combinations. Now assume that the cou-
pling of two perturbed modes results exctly in one of thegqation(4) [or (5)] can be considered a mathematical defi-
unperturbed states, then the induced GVD will be associateflition of the small parameter. In this context the cases
with the unperturbed state. As shown below, it is this sce-~ 3 andj=
nario that occurs due to coupling of modes corresponding t .e., compared with the gap widtharge and small ampli-
different edges. Moreover, the linear Bloch functions associz,qas. They correspond to distinct physical situations and
ated with the edges of the same gap have different parity, i pe considered separately in what follows.
while the effective nonlinearity is formed just by these func- | 3 realistic situation the value of the right hand side of
tions [6]. We will see that this leads to additional require- Eq. (5) can be of order of 10°. On the other hand, the

ments for the_problem parameters and in a number of Cas‘?ﬁacessary differencer,— w; can be reached even for the
narTr(r)]ws pors]smle _typles of ?olgtlon]:s.h b .second gap of the layered structufer instance, in the re-

e mathematical peculiarity of the above statements I3, \here the gap collapses, as in the analysis of particular
that the differencev,— w4 itself is now a small parameter. structureg 13]).

This fa(_:t has to be taken into account at tinst stage of the The condition of Eq(5) has a transparent physical mean-
expansion developed {€] in order to h.OId the method self- ing. In order to allow for soliton propagation, the effective
qon3|stent. In otherwqrd;, let us consider the nonlinear equasypD induced by coupling must be much stronger than the
tion for the real electric field: GVD at the gap edges. Nonlinearity must be of the same
S2E 2E 2 _order with_ the_z effective dispe_rsion. When GVD at the edges
—C2—— + €(X) = = — Amx¥(x) — E3, (1) is increasing inversly pr_oportlo_nal to fthe gap width, the latter
X at at must be comparable with the intensity of the pulse. The ef-
fective nonlinearity, however, is formed through the Bloch
where e(x) is the periodic dielectric permittivity and functions. Hence, the balance between nonlinearity and dis-
x®(x) the periodic nonlinear susceptibilifhereafter both  persion depends not only opf® but also on the “linear”
e(x) and y(®(x) are assumed to have the same pdrmatl  properties of the periodic medium. This is the reason that
c is the speed of light. We expand the electric field in thedepending on the properties of the system, localized coupled
form pulses can be created eitherjat2 or atj=3.

2 can be interpreted as the cases of relatively
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Ill. PROPERTIES OF THE COUPLED GAP SOLITONS

There is no need to discuss here all the details of th
multiscale method that are represented in the original pape
[6,7]. Instead we emphasize only some peculiarities cause
by the specific form of Eq(3). In order to obtain the equa-
tion for slowly varying amplitude one has to substitute the

expansion of Eq(2) for the electric field in Eq.(1) and
collect the terms of different powers @f. Evidently, Eq.(3)
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zZ=X;*vgtq1. In other words,a; represents a wave packet
éraveling with the velocity ;. Thus the coupled gap solitons
carry the field energy at the frequency incide the gap. For the

ke of definitness in what follows we consider the wave

ith the polarization a,=ia; (respectively it will be
Z=X1~vstt1).

In the generic caseg is not a constant but depends on
k. Taking into account the qualitative arguments of the pre-
vious section, Eq(10) and the development of the Appendix

under these assumptions solves the problem to first ordegne concludes that it is this mechanism that provides us with

For the second order term that is proportionauto(in Ref.
[6] it is the called companion term while E) is referred
to as the principal onewe write

e<2>=2 by(Xq, Xz, ...ty o, .. ) dy(Xg)e ' @o+c.c.
(6)

Also, we recall the definition for the inner product

1 (L—
<||f(X)|m)E[f0 ¢ 1(X)F(X) pm(x)dx ()

(the bar stands for the complex conjugation dnds the
length of the periodic stagkand the following additional
properties:(i) Img41(x)=Img,(x)=0 since we are consid-
ering gap edges. In other words; (x) and ¢,(x) are stand-
ing waves.ii) (I|e|m)= 8, ,, with & ,, being the Kroneker
8, this is the normalization condition for the statesi)
(1]2)={(1|al axo|1)= (2|l 3x,|2) = 0; these follow from the
fact thatg,(x) and¢,(x) have different parityeach of them
is either even or odd

Upon multiplication of Eq.(1) sequentially by(1| and

(2| and considering the companion terms we arrive at th

system of equations fax; anda,:

da, 9a,

. 0 day
— —=0,
gty USox,

aty

o,

—HvSt(?_Xl:O' (8)

where

2

c d
Ust:E<1|7|2>-

o ©

There are few important consequences of the system

Eq. (8). First, Eg.(8) has a solution characterized by

a.]_: iiaz. (10)

the new source of GVD. The value of the velodity can be
easily estimated in the cases when the general form of the
normalized Bloch functionp;(x) that is bordering the stop
gap is approximated by, coskgX+ ¢q), kg= 7/d being the
wave vector satisfying the Bragg conditiahpeing a period
of the structuren; being a normalizing constant, angl
being a constant, ang,(x) is defined in a similar way:
¢2(X)=n,sin(kgx+ ¢g) (see, e.g., the example RdB]).
We find vg=(c/2)(nyn,/n), where the effective index of
refraction isn=w/(ckg). For n;n,=n we arrive at the re-
sult vg=c/2, discovered earlier through numerical experi-
ments in Ref[11].

The result of Eq(8) explains also another feature of gap
solitons observed in Ref.l1], viz., the instability of the
steady state soliton solutions. Indeed, if solitons exist, they
must moveeither in positive or negative directions with the
velocity v, (though the expansion is provided near the sta-
tionary waves The actual direction is determined by the
asymmetry of the problem, which can be introduced, for in-
stance, through the boundary conditions.

In order to defindd, for [ # 1,2 in the representation of Eq.
(6) we multiply (1) by (I| and retain terms proportional to
éLZ; we obtain

b 1yt i I ’ 1 78
1(X1,X2, ..., 2.---)—m <|(9—X0| >E

(110 2) 222 11
(@57 [ @D
The coefficientd, andb, are determined from the con-

sideration of the third order of the expansion of E?).(note

this is a mathematical peculiarity of the case at hand com-

0r%ared with[6,7]). This step, however, is different for differ-

entj. We start with the casg=3. To this end we employ
one more feature that follows from E€): i.e., the fact that
we have only one dependent variable, for instarage, To

the third order of the expansiofie., to the terms propor-

This means that the excitations at edges are coupled. Theiional to «°%), calculating the inner product withl| and

phases have an initial phase shiftr/2. The related func-
tions a; depend ort; andx; only through the combination

(2|, and retaining harmonics with we obtaintwo nonlinear
evolution equations

21 221 oy PR s ﬁ2a1+ Nygtin 20, = — 20,22 _ 5 71 12
I&tz |Usta 1 972 (Ntikg)|a|®a;= Ustaxl |at11 (123
2\ 2
i aaz i ¢9a2 Ugt Jd a2 i 2 &bl . abz
—+ A= —| =+ (Aot =20g—— —2i —.
2i o, 2ivso —+|Aem | o (A iN1o)|as]%a, szt&xl 2i ot (12b)

Here
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Ajj —% X2 (%) B1(X) ()] P1(X) h1(X) + a(X) po(X) X (13
and
'=—<J| " 21'2<J|a/axj;)_(|a|:z/axo|1) fie1) 14w |;’2<J|(9/8X(:J,II2>£|L,&2/&XO|m>’ 14
|
wherej#m. tive coupled gap solitons do not exist. The situation, how-

Let us first consider the case

N11= N2,  Ap=0. (19
This condition is not satisfied by any nonlinearity.
Comparing Eq(123 and Eq.(12b) subject to the require-
ment (15) and taking into account the relation betwen
and a, one immediately finds the compatibility conditions
for the system. One of them determinegandb, through

the relation

Az
8v st

A, da,

b,=ib,= o7

(16)

ever, is changed if= 2. In this case the effective nonlinear-
ity associated with different edges is different but the
distinction can be compensated by relatively stronger linear
dispersion. Indeed, Egél2a and(12b) are now maodified by
adding— wa; andwa, to their right hand sides, correspond-
ingly. Equation(17) for the soliton amplitude is not changed
but the companion term is now given by

b,=ib,
= _+_ ! — ! !
8u. 9z ' Bug C[>\|al(z )|“—2w]ay(z')dz

(19

Hence the companion term is orthogonal to the principainstead of(16). The requirement fob; to decay with|z]

term (a discussion of this issue is given in the Appendix

determines the constantin (19) and can be satisfied only

This result is quite natural in the context of degenerate pergnder the condition

turbation theory.

Solutions independent ok, are obtained through the
equation for the amplituda, that is written in the form of
the NLS equation:

da,

52
2i —-I-Q” 17

+)\11|al| a,;=0.

Thusthe effective dominant GVDY" is originated by cou-

pling and is the dispersion of the degenerate basic state

d1(X) +id,(X) (see Appendix Using this last fact one finds
that Q%= }(w?+ w3) and, hence,

2

"__ ” ” Ust
Q —E(wl"'wz)_z (18
(here it is taken into account that = w,=0 at the Brillouin
zone edgg This result is naturally coordinated witf\9),

since in the presence of a gay= w" [see(14) and the

fﬁ (N a;|?—2w)a;dz=0. (20)

This last formula defines the soliton amplitude that cannot be
arbitrary any more. In order to illustrate this fact let us con-
sider the bright soliton of17) ("X ;>0),

eX[:(i )\11a2t2)
cosh\2N11/Q"az)’
where the constant characterizes the amplitude. The20)

results inae=+w/\. Hence, the coupled soliton amplitude is

proportional touJw=\w,— v, [see(d)], i.e., the field in-
tensity is proportional to the gap width.

IV. CONCLUSIONS

In this work we studied analytically properties of coupled
gap solitons, i.e., solitons that originate in periodic dielectric

expression for the GVD in the nondegenerate case derived ifhedia with a spectrum gap and are produced when linear

[6]]. It is to be pointed out that values] and wj have
different signs, and in some casésuch as, for example,
weak modulation depjhhave approximately equal moduli.

modes corresponding to the lower and upper edge frequen-
cies are coupled by nonlinearity. The coupled gap solitons
may propagate with any frequency inside the gap. For our

Then one has a simple expression for the GVD:study we used the generalization of multiple scale expansion

QU_
by the coupling is negative.

—v?/w. Thus in the mentioned cases the GVD inducedof de Sterke and Sips,7] and analyzed the resulting low

order wave equations that arise through this formalism. Our

For the existence of the coupled solitons of the above typenain assumption has been that the gap width is small com-
it was necessary to have equal nonlinearity coefficientspared with either the upper or lower gap edge. Our basic

)\11:)\22. OtherWise, if)\:)\zz_)\llqﬁ 0, )\12:0, the com-
panion term does not decay withl [see(19) below]. Since

analytical finding is that coupled gap solitons are governed
by the NLS equation. They are stable and propagate in the

the multiscale expansion is valid only if the companion termmedium with a speed compared to half the speed of light.
is much less than the principal one we conclude that resped-hese results corroborate the numerical findingglaf and
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show that the structures studied[ 1] numerically may cor- Let us introduce the notatio)} for the periodic part of
respond to coupled gap solitons. A peculiarity of the gapthe Bloch functions, i.elj)=€¥*|j}. As is well known[15]
soliton dynamicgcompared with conventional gap solitons one of the components of the basis in which the nondiagonal
is the influence of the type of nonlinear susceptibility on theelements oW/, are zero is given by |1}+c_|2}, where
characteristics of the excitation. In particular, the most im- "

portant requirement for gap solitons to exisiig=0 (note c :{ K 1+W11— sz“ (A1)
that this condition is provided by the constant nonlinear sus- 7277w '

ceptibility x®(x)=const, and this can be considered as a

perfect condition for existing coupled gap soliton®ther- ~ With K=W1p/|W1g, wij ={i|Vqli}, and
wise periodic modulation of the nonlinearity causes resonantV= V(W= Wpo)“+ 4wy,

transformation of the energy between the mutually orthogo- Direct algebra yields

nal states.

We belive that the results obtained bring more light on the
problem of experimental excitation of gap solitons, showing
how sensitive with respect to amplitude the phenomenon issince we are interested in the limit of smajj and

W11— W,o=0(g?), the quantityWv can be approximated by

Wio= Wy, = —2icq(1]a/ax|2);  w;;=c?q?(jlj).
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A direct consequence of this formula is that one of the basic
APPENDIX: GROUP VELOCITY DISPERSION states that make the operatgy diagonal in the limitg— 0 is
We generalize the arguments of Rgd] in order to inter-  given by 2-Y4(|1)+i|2)). This gives an explanation of the
pretQ)”. Since the gap is considered small, we first analyzeresult of Eq.(10): the gap soliton is an envelope modulating
the resulting GVD as one occurring at a point compatiblethe states that diagonalize the operatgrto the lowest order
with a shrinking gap. Such a point corresponds to a doublyith respect tog. This also explains the form of the com-
degenerate state of the spectrum. Hence one can applypanion term since in the basis defined above the first order
k-p method for degenerate states. We do this in two stepsorrection appears to be orthogon@h the space of the
First we introduce the normalized basis in which the pertureigenfunctionsto the term of the zero ord¢d5].
bation The expansion of the eigenval@¥ corresponding to the
eigenfunctionc, |1} +c_|2} is now given by

d
V,=—c?|2iq —+ik)—q2} V.2
q ~
o Q2= Vs S, Wl (AS5)
P m#12 0"~ Wy,
is diagonal, and then we apply the well-knowtb] expan-
sion of the eigenvalues. where
~ . . g°c?
V =({1]c + +{2]c _)Vq(c.|1}+c[2}) =2¢%q(1]alox|2) + ——((1]1)+(2]2)) + O(a®), (A6)

IVin|2=Km|Vq(c |1} +c_|2}) P=c?a?[[Km|a/ ax| 1) |2+ K m[ al ax| 2) |2 +i{m| 9/ ax| 1)(m| 3/ 9x| 2) — i{m| 3/ 9x| 1){m| 9/ 9x| 2) ],
(A7)

and the sum ifA5) excludes the states that are degenerated 1 v

[in the terms of the initial statement of the problem they are Q”ZE(A1+A2)— e (A9)
$1(x) and ¢,(x), i.e., m#1,2]. Comparing(A5) with the

definition (9) one finds that

Q' =vg (A8) Thus Q' is a group velocity associated with the mode
d1(X) +idy(x), i.e., with the cw that is modulated, and
and "=dvg/dkis its GVD.



5398 V. V. KONOTOP AND G. P. TSIRONIS 53

[1] M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and [9] C. M. de Sterke and J. E. Sipe, Phys. RevZ 2858(1990.
K. M. Ho, Phys. Rev. B48, 14 121(1993, and references [10] J. E. Sipe, inGuided Wave Nonlinear Opticedited by D. B.

therein. Ostrowsky and R. ReiniscliKluwer Academic, Dordrecht,
[2] H. G. Winful, Appl. Phys. Lett46, 527 (1985. Netherlands, 1992
[3] W. Chen and D. L. Mills, Phys. Rev. Lef8, 160 (1987. [11] J. Peyraud and J. Coste, Phys. Revi( 12 201(1989.

[12] V. V. Konotop, Phys. Rev. 51, R3423(1995.

E‘j ?EL g!'”s ang 3 ICE; 'i'/:/gll;nlgeg Thgsﬁ_':e\llégs’lggulgsn' [13] S. A. Bulgakov and M. Nieto-Vesperindgrivate communica-
- £ SIp€ an - . Wintul, Opt. LetLs, ( 8. tion); see also D. R. Smith, R. Dalichaouch, N. Kroll, S.

[6] C. M. de Sterke and J. E. Sipe, Phys. Re\88)5149(1988. Schultz, S. L. Mc Call, and P. M. Platzman, J. Opt. Soc. Am. B
[7] C. M. de Sterke and J. E. Sipe, Phys. Re89\5163(1989. 10, 314(1993.
[8] D. N. Christodoulides and R. I. Joseph, Phys. Rev. l&2.  [14] S. Lee and S.-T. Ho, Opt. Lett8, 962 (1993.
1746(1989; A. B. Aceves and S. Wabnitz, Phys. Lett141,  [15] L. D. Landau and E. M. LifshitzQuantum MechanicgPerga-
37 (1989. mon, New York, 197Y.



