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We show analytically that solitonic states of two modes associated with different gap edges are formed when
incident waves are sent in layered dielectric systems with a small band gap. The resulting coupled gap solitons
are described through a nonlinear Schro¨dinger equation and propagate with a speed equal to half the speed of
light. We discuss the conditions for the existence of coupled gap solitons.

PACS number~s!: 42.65.Tg

I. INTRODUCTION

Periodic optical structures attract increasing attention due
to their remarkable properties such as the appearance of stop
gaps in the spectrum, where the propagation of the linear
waves is impossible@1#. Furthermore, periodicity can pro-
duce group velocity dispersion~GVD! at the edges of the
gaps, even if the composite materials are nondispersive.
Combining nonlinearity with such a dispersion may lead to
the creation and propagation of solitons. This possibility has
been predicted by Winful@2# and discovered numerically by
Chen and Mills@3#. In a series of publications@4–10# the
theory of the gap solitons has been developed. In particular,
it has been shown that when nonlinearity is present, the
propagation of light in the gap is possible and occurs in the
form of pulses localized in space that are named gap solitons.

From rigorous expansion methods developed in Refs.
@5–7# we know that these pulses are governed by the non-
linear Schro¨dinger ~NLS! equation when the incident wave
has frequency equal~or close! to that of the gap edge@5,6# or
by a system of coupled NLS-like equations if either the fre-
quency is inside a gap or generation of the third harmonic is
taken into account@7#. The method of Refs.@5–7# uses
Bloch functions as a background of the expansion that makes
it rather general; it has been applied so far only to study
situations when at nonvanishing periodic modulation of the
linear dielectric permittivity either the incident radiation is
close to the band edge frequency or the gap width is large
enough~a system of the coupled NLS-like equations describ-
ing the last case is derived in@7#!. Peyraud and Coste@11#,
on the other hand, used numerical experiments and discov-
ered some interesting propagating features of nonlinear lay-
ered media. More specifically, they found that~i! stationary
gap solitons are generically unstable~i.e., asymmetry of the
system results in thepropagationof the solitons!, and~ii ! if
the intensity of the applied radiation is strong enough, i.e., is

above some critical value the ‘‘trivial solution’’~according
to Ref. @11#! becomes unstable while at the same time, gap
solitons appear that propagate with a velocity close toc/2.
For the present work it is important to mention that the above
phenomena are observed when the incident wave has fre-
quency equal to the middle of the gap and the critical inten-
sity is estimated to be of the order of the half of the gap
width ~in dimensionless units!. Physically, this corresponds
to a situation where both gap edges play an equivalent role in
the wave creation and hence excluded from the conditions of
the work presented in Refs.@5–7#.

The situation considered in@11# naturally implies a cou-
pling of edges of the gap. This coupling is different from the
one considered in@8–10#, since in the last case structures
with weak modulation depths were examined, while the
modulation in@11# is extremely strong. In the case of weak
modulation@8–10# coupling occurrs between counterpropa-
gating plane waves with wave numbers determined by the
Bragg condition. By analogy, it is reasonable to assume that
in the conditions of the numerical experiment of Ref.@11#
there is a coupling of standing waves that are Bloch func-
tions of states near the stop gap.

The goal then of the present paper is to investigate in
more detail the role of the gap edges in the dynamics and
give an analytical explanation for the numerical findings of
Peyraud and Coste. It will be shown that the method of de
Sterke and Sipe@6,7# can be generalized to take into account
coupling of modes. Here we mean sufficiently strong cou-
pling, which occurs on alinear level of the perturbative ex-
pansion, rather than due to the well known cross-phase
modulation@14#. It is to be mentioned that another manifes-
tation of mode coupling due to anysotropy of the medium
has recently been reported in@12#. In that case weak anisot-
ropy resulted in splitting the frequency~located near an edge
of a stop gap large enough! and creating vector solitons of
two orthogonal polarizations of the field. The coupling stud-
ied in the present paper has a different physical nature: it is
due totwomodes corresponding totwo different edges of a
narrow gap. The medium will be considered isotropic. This
will lead to asingleSchrödinger equation so that respective
solitons will have ‘‘scalar’’ character as long as only one TE
polarization of the electric field is under consideration.

The structure of the paper is the following: In Sec. II we
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give a precise definition of the problem and describe the
analytical technique to be used. In Sec. III we discuss the
properties of the coupled gap solitons and in Sec. IV we
conclude.

II. MULTIPLE SCALE EXPANSION

Before deriving analytical expressions, let us first discuss
some physical and mathematical aspects of the problem.
Consider an incident wave having a frequency equal to the
frequency at the middle of the stop gap and assume that the
latter is narrow enough~the arguments that follow qualita-
tively apply also for the case of large radiation intensity!. We
denote byv1 andv2 the lower and upper gap boundaries,
respectively, i.e., assumev1,v2 . In the presence of nonlin-
earity, an incident wave should cause generation of solitons
at both edges. Since soliton pulses are products of a delicate
balance between GVD and nonlinearity a small ‘‘distance’’
between the band edges causessimultaneousexcitation of
solitons on one hand, whereas, on the other hand, in order for
both solitons to exist, the balance between nonlinearity and
dispersion inbothedges has to be provided. The last require-
ment is not evident or trivial. Indeed, the sign of GVD at the
edges of one of the gaps is different. Thus, in order for gap
solitons to exist, it is necessary to have another source of
GVD.

In order to give an idea of the possible origin of the in-
duced GVD, let us recall the well known fact of the linear
theory @15#: If there is a cross point of two branches of a
spectrum of a system~i.e., a degeneration point!, then a
small perturbation removes the degeneracy and results in two
new branches. On the other hand, this means that in leading
order there are two representations of a linear wave~in the
nonlinear theory it serves as a background for an envelope
soliton!. They are either perturbed~i.e., having the gap! or
unperturbed linear combinations. Now assume that the cou-
pling of two perturbed modes results exctly in one of the
unperturbed states, then the induced GVD will be associated
with the unperturbed state. As shown below, it is this sce-
nario that occurs due to coupling of modes corresponding to
different edges. Moreover, the linear Bloch functions associ-
ated with the edges of the same gap have different parity,
while the effective nonlinearity is formed just by these func-
tions @6#. We will see that this leads to additional require-
ments for the problem parameters and in a number of cases
narrows possible types of solutions.

The mathematical peculiarity of the above statements is
that the differencev22v1 itself is now a small parameter.
This fact has to be taken into account at thefirst stage of the
expansion developed in@6# in order to hold the method self-
consistent. In other words, let us consider the nonlinear equa-
tion for the real electric fieldE:

2c2
]2E

]x2
1e~x!

]2E

]t2
524px~3!~x!

]2

]t2
E3, ~1!

where e(x) is the periodic dielectric permittivity and
x (3)(x) the periodic nonlinear susceptibility@hereafter both
e(x) andx (3)(x) are assumed to have the same period# and
c is the speed of light. We expand the electric field in the
form

E5me~1!1m2e~2!1•••, ~2!

wherem is a small parameterm!1, and use the substitution

e~1!~x,t !5@a1~x,t !f1~x!1a2~x,t !f2~x!#e2 ivt1c.c.
~3!

Hereafter the indices 1 and 2 refer to the lower and upper
edges of the gap, respectively,fm(x) is the Bloch function
associated with the edgem, v5(v11v2)/2 is the frequency
corresponding to the middle of the gap, and c.c. means com-
plex conjugation. In the representation of Eq.~3! we have
imposed

v22v1

v
5m j , j>2 ~4!

and hence the fact that the amplitudesam(x,t) are slowly
varying has been taken into account. Note that the multi-
scale expansion

t5t01mt11m2t21•••, x5x01mx11m2x21•••

results in (v22v1)t5vt j andam depends onxj andt j with
j>1: am5am(x1 ,x2 , . . . ;t1 ,t2 , . . . ) ~see@6#, or the devel-
opment below!. Thus, comparing~2! and ~4!, the physical
condition for the expansion to be valid can be expressed
through the relation

v22v1

v21v1
;S x~3!I

e D j /2. ~5!

Equation~4! @or ~5!# can be considered a mathematical defi-
nition of the small parameter. In this context the cases
j>3 and j52 can be interpreted as the cases of relatively
~i.e., compared with the gap width! large and small ampli-
tudes. They correspond to distinct physical situations and
will be considered separately in what follows.

In a realistic situation the value of the right hand side of
Eq. ~5! can be of order of 1023. On the other hand, the
necessary differencev22v1 can be reached even for the
second gap of the layered structure~for instance, in the re-
gion where the gap collapses, as in the analysis of particular
structures@13#!.

The condition of Eq.~5! has a transparent physical mean-
ing. In order to allow for soliton propagation, the effective
GVD induced by coupling must be much stronger than the
GVD at the gap edges. Nonlinearity must be of the same
order with the effective dispersion. When GVD at the edges
is increasing inversly proportional to the gap width, the latter
must be comparable with the intensity of the pulse. The ef-
fective nonlinearity, however, is formed through the Bloch
functions. Hence, the balance between nonlinearity and dis-
persion depends not only onx (3) but also on the ‘‘linear’’
properties of the periodic medium. This is the reason that
depending on the properties of the system, localized coupled
pulses can be created either atj52 or at j>3.
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III. PROPERTIES OF THE COUPLED GAP SOLITONS

There is no need to discuss here all the details of the
multiscale method that are represented in the original papers
@6,7#. Instead we emphasize only some peculiarities caused
by the specific form of Eq.~3!. In order to obtain the equa-
tion for slowly varying amplitude one has to substitute the
expansion of Eq.~2! for the electric field in Eq.~1! and
collect the terms of different powers ofm. Evidently, Eq.~3!
under these assumptions solves the problem to first order.
For the second order term that is proportional tom2 ~in Ref.
@6# it is the called companion term while Eq.~3! is referred
to as the principal one! we write

e~2!5(
l
bl~x1 ,x2 , . . . ;t1 ,t2 , . . . !f l~x0!e

2 ivt01c.c.

~6!

Also, we recall the definition for the inner product

^ l u f ~x!um&[
1

LE0
L

f̄ l~x! f ~x!fm~x!dx ~7!

~the bar stands for the complex conjugation andL is the
length of the periodic stack! and the following additional
properties:~i! Imf1(x)5Imf2(x)50 since we are consid-
ering gap edges. In other words,f1(x) andf2(x) are stand-
ing waves.~ii ! ^ l ueum&5d l ,m , with d l ,m being the Kroneker
d; this is the normalization condition for the states.~iii !
^1u2&5^1u]/]x0u1&5^2u]/]x0u2&50; these follow from the
fact thatf1(x) andf2(x) have different parity~each of them
is either even or odd!.

Upon multiplication of Eq.~1! sequentially by^1u and
^2u and considering the companion terms we arrive at the
system of equations fora1 anda2:

]a1
]t1

2 ivst
]a2
]x1

50,
]a2
]t1

1 ivst
]a1
]x1

50, ~8!

where

vst5
c2

v
^1u

]

]x0
u2&. ~9!

There are few important consequences of the system of
Eq. ~8!. First, Eq.~8! has a solution characterized by

a156 ia2 . ~10!

This means that the excitations at edges are coupled. Their
phases have an initial phase shift6p/2. The related func-
tions aj depend ont1 andx1 only through the combination

z5x16vstt1 . In other words,aj represents a wave packet
traveling with the velocityvst. Thus the coupled gap solitons
carry the field energy at the frequency incide the gap. For the
sake of definitness in what follows we consider the wave
with the polarization a25 ia1 ~respectively it will be
z5x12vstt1).

In the generic casevst is not a constant but depends on
k. Taking into account the qualitative arguments of the pre-
vious section, Eq.~10! and the development of the Appendix
one concludes that it is this mechanism that provides us with
the new source of GVD. The value of the velocityvst can be
easily estimated in the cases when the general form of the
normalized Bloch functionf1(x) that is bordering the stop
gap is approximated byn1cos(kBx1f0), kB5p/d being the
wave vector satisfying the Bragg condition,d being a period
of the structure,n1 being a normalizing constant, andf0
being a constant, andf2(x) is defined in a similar way:
f2(x)5n2sin(kBx1f0) ~see, e.g., the example Ref.@6#!.
We find vst5(c/2)(n1n2 /n), where the effective index of
refraction isn5v/(ckB). For n1n25n we arrive at the re-
sult vst5c/2, discovered earlier through numerical experi-
ments in Ref.@11#.

The result of Eq.~8! explains also another feature of gap
solitons observed in Ref.@11#, viz., the instability of the
steady state soliton solutions. Indeed, if solitons exist, they
must moveeither in positive or negative directions with the
velocity vst ~though the expansion is provided near the sta-
tionary waves!. The actual direction is determined by the
asymmetry of the problem, which can be introduced, for in-
stance, through the boundary conditions.

In order to definebl for lÞ1,2 in the representation of Eq.
~6! we multiply ~1! by ^ l u and retain terms proportional to
m2; we obtain

bl~x1 ,x2 , . . . ;t1 ,t2 , . . . !5
2c2

v l
22v2 H ^ l u

]

]x0
u1&

]a1
]z

1^ l u
]

]x0
u2&

]a2
]z J . ~11!

The coefficientsb1 andb2 are determined from the con-
sideration of the third order of the expansion of Eq.~2! ~note
this is a mathematical peculiarity of the case at hand com-
pared with@6,7#!. This step, however, is different for differ-
ent j . We start with the casej>3. To this end we employ
one more feature that follows from Eq.~8!: i.e., the fact that
we have only one dependent variable, for instance,a1 . To
the third order of the expansion~i.e., to the terms propor-
tional to m3), calculating the inner product witĥ1u and
^2u, and retaining harmonics withv we obtaintwononlinear
evolution equations

2i
]a1
]t2

12ivst
]a1
]x2

1SA12
vst
2

v D ]2a1
]z2

1~l111 il12!ua1u2a1522vst
]b2
]x1

22i
]b1
]t1

, ~12a!

2i
]a2
]t2

12ivst
]a2
]x2

1SA22
vst
2

v D ]2a2
]z2

1~l221 il12!ua2u2a252vst
]b1
]x1

22i
]b2
]t1

. ~12b!

Here
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l l j5
12p

L E
0

L

x~3!~x!f l~x!f j~x!@f1~x!f1~x!1f2~x!f2~x!#dx ~13!

and

Aj5
c2

v
^ j u j &1

4c2

v (
lÞ1,2

^ j u]/]x0u l &^ l u]/]x0u j &
v l
22v2 1 i ~21! j21

4c2

v (
lÞ1,2

^ j u]/]x0u l &^ l u]/]x0um&
v l
22v2 , ~14!

where jÞm.
Let us first consider the case

l115l22, l1250. ~15!

This condition is not satisfied by any nonlinearity.
Comparing Eq.~12a! and Eq.~12b! subject to the require-

ment ~15! and taking into account the relation betweena1
and a2 one immediately finds the compatibility conditions
for the system. One of them determinesb1 andb2 through
the relation

b15 ib25 i
A22A1

8vst

]a1
]z

. ~16!

Hence the companion term is orthogonal to the principal
term ~a discussion of this issue is given in the Appendix!.
This result is quite natural in the context of degenerate per-
turbation theory.

Solutions independent ofx2 are obtained through the
equation for the amplitudea1 that is written in the form of
the NLS equation:

2i
]a1
]t2

1V9
]2a1
]z2

1l11ua1u2a150. ~17!

Thus the effective dominant GVDV9 is originated by cou-
pling and is the dispersion of the degenerate basic state
f1(x)1 if2(x) ~see Appendix!. Using this last fact one finds
thatV25 1

2(v1
21v2

2) and, hence,

V95
1

2
~v191v29!2

vst
2

v
~18!

~here it is taken into account thatv185v2850 at the Brillouin
zone edge!. This result is naturally coordinated with~A9!,
since in the presence of a gapAj5v j9 @see ~14! and the
expression for the GVD in the nondegenerate case derived in
@6##. It is to be pointed out that valuesv19 and v29 have
different signs, and in some cases~such as, for example,
weak modulation depth! have approximately equal moduli.
Then one has a simple expression for the GVD:
V952vst

2/v. Thus in the mentioned cases the GVD induced
by the coupling is negative.

For the existence of the coupled solitons of the above type
it was necessary to have equal nonlinearity coefficients:
l115l22. Otherwise, ifl5l222l11Þ0, l1250, the com-
panion term does not decay withuzu @see~19! below#. Since
the multiscale expansion is valid only if the companion term
is much less than the principal one we conclude that respec-

tive coupled gap solitons do not exist. The situation, how-
ever, is changed ifj52. In this case the effective nonlinear-
ity associated with different edges is different but the
distinction can be compensated by relatively stronger linear
dispersion. Indeed, Eqs.~12a! and~12b! are now modified by
adding2va1 andva2 to their right hand sides, correspond-
ingly. Equation~17! for the soliton amplitude is not changed
but the companion term is now given by

b15 ib2

5 i
A22A1

8vst

]a1
]z

1
i

8vst
E
c

z

@lua1~z8!u222v#a1~z8!dz8

~19!

instead of~16!. The requirement forbj to decay withuzu
determines the constantc in ~19! and can be satisfied only
under the condition

E
2`

`

~lua1u222v!a1dz50. ~20!

This last formula defines the soliton amplitude that cannot be
arbitrary any more. In order to illustrate this fact let us con-
sider the bright soliton of~17! (V9l11.0),

a152a
exp~ il11a

2t2!

cosh~A2l11/V9az!
, ~21!

where the constanta characterizes the amplitude. Then~20!
results ina5Av/l. Hence, the coupled soliton amplitude is
proportional tomAv5Av22v1 @see~4!#, i.e., the field in-
tensity is proportional to the gap width.

IV. CONCLUSIONS

In this work we studied analytically properties of coupled
gap solitons, i.e., solitons that originate in periodic dielectric
media with a spectrum gap and are produced when linear
modes corresponding to the lower and upper edge frequen-
cies are coupled by nonlinearity. The coupled gap solitons
may propagate with any frequency inside the gap. For our
study we used the generalization of multiple scale expansion
of de Sterke and Sipe@6,7# and analyzed the resulting low
order wave equations that arise through this formalism. Our
main assumption has been that the gap width is small com-
pared with either the upper or lower gap edge. Our basic
analytical finding is that coupled gap solitons are governed
by the NLS equation. They are stable and propagate in the
medium with a speed compared to half the speed of light.
These results corroborate the numerical findings of@11# and
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show that the structures studied in@11# numerically may cor-
respond to coupled gap solitons. A peculiarity of the gap
soliton dynamics~compared with conventional gap solitons!
is the influence of the type of nonlinear susceptibility on the
characteristics of the excitation. In particular, the most im-
portant requirement for gap solitons to exist isl1250 ~note
that this condition is provided by the constant nonlinear sus-
ceptibility x (3)(x)[const, and this can be considered as a
perfect condition for existing coupled gap solitons!. Other-
wise periodic modulation of the nonlinearity causes resonant
transformation of the energy between the mutually orthogo-
nal states.

We belive that the results obtained bring more light on the
problem of experimental excitation of gap solitons, showing
how sensitive with respect to amplitude the phenomenon is.
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APPENDIX: GROUP VELOCITY DISPERSION
We generalize the arguments of Ref.@6# in order to inter-

pretV9. Since the gap is considered small, we first analyze
the resulting GVD as one occurring at a point compatible
with a shrinking gap. Such a point corresponds to a doubly
degenerate state of the spectrum. Hence one can apply a
k•p method for degenerate states. We do this in two steps.
First we introduce the normalized basis in which the pertur-
bation

Vq52c2F2iqS ]

]x
1 ik D2q2G

is diagonal, and then we apply the well-known@15# expan-
sion of the eigenvalues.

Let us introduce the notationu j % for the periodic part of
the Bloch functions, i.e.,u j &5eikxu j %. As is well known@15#
one of the components of the basis in which the nondiagonal
elements ofVq are zero is given byc1u1%1c2u2%, where

c65H 6
k

2 F16
w112w22

W G J 1/2, ~A1!

with k5w12/uw12u, wi j5$ i uVqu j %, and
W5A(w112w22)

214uw12u2.
Direct algebra yields

w125w21522icq^1u]/]xu2&; wj j5c2q2^ j u j &.
~A2!

Since we are interested in the limit of smallq and
w112w225O(q2), the quantityW can be approximated by

W54cqu^1u]/]xu2&u. ~A3!

Hence one can put

c65H 6
1

2 F16
qc~^1u1&2^2u2&!

4z^1u]/]xu2& z G J 1/2. ~A4!

A direct consequence of this formula is that one of the basic
states that make the operatorVq diagonal in the limitq→0 is
given by 221/2(u1&1 i u2&). This gives an explanation of the
result of Eq.~10!: the gap soliton is an envelope modulating
the states that diagonalize the operatorVq to the lowest order
with respect toq. This also explains the form of the com-
panion term since in the basis defined above the first order
correction appears to be orthogonal~in the space of the
eigenfunctions! to the term of the zero order@15#.

The expansion of the eigenvalueV2 corresponding to the
eigenfunctionc1u1%1c2u2% is now given by

V25v21Ṽ1 (
mÞ1,2

uVmu2

v22vm
2 , ~A5!

where

Ṽ 5~$1uc̄ 11$2uc̄ 2!Vq~c1u1%1c2u2%!52c2q^1u]/]xu2&1
q2c2

2
~^1u1&1^2u2&!1O~q3!, ~A6!

uVmu25 z$muVq~c1u1%1c2u2%) z25c2q2@ z^mu]/]xu1& z21 z^mu]/]xu2& z21 i ^mu]/]xu1&^mu]/]xu2&2 i ^mu]/]xu1&^mu]/]xu2&#,
~A7!

and the sum in~A5! excludes the states that are degenerated
@in the terms of the initial statement of the problem they are
f1(x) and f2(x), i.e., mÞ1,2#. Comparing~A5! with the
definition ~9! one finds that

V85vst ~A8!

and

V95
1

2
~A11A2!2

vst
2

v
. ~A9!

Thus V8 is a group velocity associated with the mode
f1(x)1 if2(x), i.e., with the cw that is modulated, and
V95dvst/dk is its GVD.

53 5397DYNAMICS OF COUPLED GAP SOLITONS



@1# M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and
K. M. Ho, Phys. Rev. B48, 14 121 ~1993!, and references
therein.

@2# H. G. Winful, Appl. Phys. Lett.46, 527 ~1985!.
@3# W. Chen and D. L. Mills, Phys. Rev. Lett.58, 160 ~1987!.
@4# D. L. Mills and S. E. Trullinger, Phys. Rev. B36, 947 ~1987!.
@5# J. E. Sipe and H. G. Winful, Opt. Lett.13, 132 ~1988!.
@6# C. M. de Sterke and J. E. Sipe, Phys. Rev. A38, 5149~1988!.
@7# C. M. de Sterke and J. E. Sipe, Phys. Rev. A39, 5163~1989!.
@8# D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett.62,

1746~1989!; A. B. Aceves and S. Wabnitz, Phys. Lett. A141,
37 ~1989!.

@9# C. M. de Sterke and J. E. Sipe, Phys. Rev. A42, 2858~1990!.
@10# J. E. Sipe, inGuided Wave Nonlinear Optics, edited by D. B.

Ostrowsky and R. Reinisch~Kluwer Academic, Dordrecht,
Netherlands, 1992!.

@11# J. Peyraud and J. Coste, Phys. Rev. B40, 12 201~1989!.
@12# V. V. Konotop, Phys. Rev. A51, R3423~1995!.
@13# S. A. Bulgakov and M. Nieto-Vesperinas~private communica-

tion!; see also D. R. Smith, R. Dalichaouch, N. Kroll, S.
Schultz, S. L. Mc Call, and P. M. Platzman, J. Opt. Soc. Am. B
10, 314 ~1993!.

@14# S. Lee and S.-T. Ho, Opt. Lett.18, 962 ~1993!.
@15# L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-

mon, New York, 1977!.

5398 53V. V. KONOTOP AND G. P. TSIRONIS


